
数组的反转表示;需要进行多少次更改才能将数组转换为其排序形式。当数组已经排序时,需要 0 次反转,而在其他情况下,如果数组反转,反转次数将达到最大。
为了解决这个问题,我们将遵循归并排序方法降低时间复杂度,采用分治算法。
A sequence of numbers. (1, 5, 6, 4, 20).
将数字升序排列所需的反转次数。
Here the number of inversions are 2. First inversion: (1, 5, 4, 6, 20) Second inversion: (1, 4, 5, 6, 20)
输入 - 两个数组,谁已经合并,左,右和中间索引。
立即学习“C++免费学习笔记(深入)”;
输出-按排序顺序合并的数组。
Begin
i := left, j := mid, k := right
count := 0
while i <= mid -1 and j <= right, do
if array[i] <= array[j], then
tempArray[k] := array[i]
increase i and k by 1
else
tempArray[k] := array[j]
increase j and k by 1
count := count + (mid - i)
done
while left part of the array has some extra element, do
tempArray[k] := array[i]
increase i and k by 1
done
while right part of the array has some extra element, do
tempArray[k] := array[j]
increase j and k by 1
done
return count
End输入 - 给定数组和临时数组,数组的左右索引。
输出 - 排序后的逆序对数量。
Begin
count := 0
if right > left, then
mid := (right + left)/2
count := mergeSort(array, tempArray, left, mid)
count := count + mergeSort(array, tempArray, mid+1, right)
count := count + merge(array, tempArray, left, mid+1, right)
return count
End实时演示
#include <iostream>
using namespace std;
int merge(int arr[], int temp[], int left, int mid, int right) {
int i, j, k;
int count = 0;
i = left; //i to locate first array location
j = mid; //i to locate second array location
k = left; //i to locate merged array location
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]){ //when left item is less than right item
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
count += (mid - i); //find how many convertion is performed
}
}
while (i <= mid - 1) //if first list has remaining item, add them in the list
temp[k++] = arr[i++];
while (j <= right) //if second list has remaining item, add them in the list
temp[k++] = arr[j++];
for (i=left; i <= right; i++)
arr[i] = temp[i]; //store temp Array to main array
return count;
}
int mergeSort(int arr[], int temp[], int left, int right){
int mid, count = 0;
if (right > left) {
mid = (right + left)/2; //find mid index of the array
count = mergeSort(arr, temp, left, mid); //merge sort left sub array
count += mergeSort(arr, temp, mid+1, right); //merge sort right sub array
count += merge(arr, temp, left, mid+1, right); //merge two sub arrays
}
return count;
}
int arrInversion(int arr[], int n) {
int temp[n];
return mergeSort(arr, temp, 0, n - 1);
}
int main() {
int arr[] = {1, 5, 6, 4, 20};
int n = 5;
cout << "Number of inversions are "<< arrInversion(arr, n);
}Number of inversions are 2
以上就是使用归并排序算法编写的C/C++程序,用于计算数组中的逆序数的详细内容,更多请关注php中文网其它相关文章!
c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号