首页 > 后端开发 > C++ > 正文

C++如何实现一个稀疏表(Sparse Table)_C++解决RMQ(区间最值查询)问题的O(1)算法

尼克
发布: 2025-11-25 10:55:12
原创
230人浏览过
稀疏表通过倍增思想预处理静态数组,实现O(1)区间最值查询。预处理STi表示从i开始长度为2^j的区间最值,递推式为STi=min(STi, STi+(1<<j-1)),查询时取覆盖[l,r]的两个2^k长度区间的最值,k=floor(log2(r-l+1))。

c++如何实现一个稀疏表(sparse table)_c++解决rmq(区间最值查询)问题的o(1)算法

稀疏表(Sparse Table)是一种用于快速查询静态数组区间最值(RMQ,Range Minimum/Maximum Query)的数据结构。它通过预处理实现 O(1) 的查询时间复杂度,适用于不修改原数组的场景。预处理时间复杂度为 O(n log n),空间复杂度也为 O(n log n)。

稀疏表的基本思想

稀疏表的核心是倍增思想:对于每个位置 i,预先计算从 i 开始长度为 2^j 的区间的最值。这样任意一个区间 [l, r] 都可以被两个长度为 2^k 的区间覆盖,其中 k = floor(log2(r - l + 1)),这两个区间有重叠也没关系,只要能完全覆盖 [l, r] 即可。

查询时取这两个区间的最值的较小(或较大)值即可,因此可在常数时间内完成。

实现步骤

1. 预处理对数表(可选但推荐)

为了快速得到每个长度对应的 k = floor(log2(len)),我们可以预处理一个 log 数组,避免每次调用 log 函数。

立即学习C++免费学习笔记(深入)”;

2. 构建稀疏表 ST

设 ST[i][j] 表示从位置 i 开始,长度为 2^j 的区间中的最小值(或最大值)。递推公式为:

ST[i][0] = arr[i] (长度为 1)

ST[i][j] = min(ST[i][j-1], ST[i + (1

Poixe AI
Poixe AI

统一的 LLM API 服务平台,访问各种免费大模型

Poixe AI 75
查看详情 Poixe AI

3. 查询 [l, r] 区间最小值

计算 k = log2(r - l + 1)

结果为 min(ST[l][k], ST[r - (1

C++ 实现代码

以下是一个完整的 C++ 实现,支持区间最小值查询:

#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;

class SparseTable {
private:
    vector<vector<int>> st;  // 稀疏表
    vector<int> log;         // 预处理 log2 数组
    int n;

public:
    // 构造函数,输入数组构建稀疏表
    SparseTable(vector<int>& arr) {
        n = arr.size();
        log.resize(n + 1);
        // 预处理 log2 值
        for (int i = 2; i <= n; i++) {
            log[i] = log[i / 2] + 1;
        }

        int k = log[n] + 1;  // 最大可能的 j
        st.assign(n, vector<int>(k));

        // 初始化长度为 1 的区间
        for (int i = 0; i < n; i++) {
            st[i][0] = arr[i];
        }

        // 倍增构建稀疏表
        for (int j = 1; j < k; j++) {
            for (int i = 0; i + (1 << j) <= n; i++) {
                st[i][j] = min(st[i][j-1], st[i + (1 << (j-1))][j-1]);
            }
        }
    }

    // 查询 [l, r] 区间最小值,闭区间
    int query(int l, int r) {
        int len = r - l + 1;
        int k = log[len];
        return min(st[l][k], st[r - (1 << k) + 1][k]);
    }
};
登录后复制

使用示例

假设我们有一个数组,想多次查询其子区间的最小值:

#include <iostream>
using namespace std;

int main() {
    vector<int> arr = {1, 3, 2, 5, 4, 7, 0, 6};
    SparseTable st(arr);

    cout << st.query(1, 4) << endl;  // 输出 2 (min of [3,2,5,4])
    cout << st.query(0, 7) << endl;  // 输出 0
    cout << st.query(3, 5) << endl;  // 输出 4

    return 0;
}
登录后复制

如果需要支持最大值查询,只需将 min 改为 max 即可。

基本上就这些。稀疏表适合静态数据下的高频 RMQ 查询,实现简单且效率极高。注意它不能处理更新操作,如需支持更新,应考虑线段树或树状数组。

以上就是C++如何实现一个稀疏表(Sparse Table)_C++解决RMQ(区间最值查询)问题的O(1)算法的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号